5929

主题

5931

帖子

2万

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
21556

耐热复合材料应用综述

[复制链接]
查看: 3407|回复: 0
发表于 2015-2-9 15:21:43 | 显示全部楼层 |阅读模式

       复合材料由颗粒、纤维分散状的基体材料构成,而构成基体材料的物质要能够混合交融在一起;不受溶解、融化、化学反应和机械作用的影响。通常,复合材料的耐热抗腐蚀和抗氧化性能都是由基体材料的属性所决定。基体是复合材料的塑性可变形部分,其机械强度要比补充材料的机械强度要低。用来增强基体材料或促使自润滑性能的补充材料的化学属性和构造也各有不同。

2. 复合耐热结构

基体

       陶瓷基体通常有Al2O3、ZrO2、SiC、Si3N4、TiC、B4C、BN、Al2O3•Y2O3, 3Al2O3•SiO2, Al2O3•MgO等。

       SiC是一种类金刚石的晶体结构材料,硬度高、抗拉强度大,是一种难加工材料,如图一所示。Si3N4和SiC陶瓷要比传统合金优越;特别是高温下所表现出来的化学惰性。例如SiC可以耐1400 ℃的高温,Si3N4可以耐1600 ℃的高温,而Al2O3可以耐1800 ℃以上的高温。

耐热复合材料应用综述

耐热复合材料应用综述



增强材料

连续纤维:

       碳化硅纤维:SiC常用于增强陶瓷,有着优越的物理和化学性能:高温下热稳定性好、强度高、硬度高达3000-3500HV,热膨胀系数低、抗氧化性能好,如表二所示。在20-1400 ℃下SiC的抗折强度超过了950 N/mm2。SiC纤维的抗折强度则一直保持在初始值直至温度上升至800-900 ℃。

耐热复合材料应用综述

耐热复合材料应用综述



       氧化铝纤维:氧化铝纤维最为优越的特性就是在空气中的稳定性,在高达1300℃下仍能保持强度不变。氧化铝纤维的弹性系数高、电气隔离性能好,强度中等。表三为几种类型的纤维性能。

耐热复合材料应用综述

耐热复合材料应用综述



       玻璃/石英纤维:玻璃纤维可用于700 ℃以上加工温度,机械强度高、弹性系数高、热导系数低、抗腐蚀强度高、吸湿度为0。玻璃纤维有多种类型:玻璃纤维A(不耐水型)、玻璃纤维C(抗酸腐蚀型)、玻璃纤维D(低密度、低介电常数型)、玻璃纤维E(抗腐蚀强度高、电阻率高)、玻璃纤维M(硬度高;掺入8%的BeO)、玻璃纤维S(机械强度高、耐高温),如表四所示。

耐热复合材料应用综述

耐热复合材料应用综述



       用于纤维制造最常用的玻璃类型为E,这是一种碱含量(Na2O-K2O-Li2O)在2%以下的硼硅酸铝钙玻璃。较低的碱含量保证良好的抗腐蚀强度和电阻率。纤维性能受制造工艺和纤维尺寸的影响,当纤维直径增大时,杨氏模量和横向弹性模量略有增加。

       石英纤维在1050 ℃以上时仍能保持较好的强度,在1050 ℃-1250℃之间时能保持一段较短时间的性能。软化温度为1650℃,升华温度为1800 ℃。径向方向和轴向方向上的热膨胀系数一致且较低。石英纤维的抗拉强度与芳族聚酰胺纤维接近,但延伸率略比芳族聚酰胺纤维要高。表五是石英纤维的主要特性(抗拉强度和弹性模量由环氧树脂单项复合材料求得)。

       除此之外,石英纤维还具有良好的抗化学试剂反应性、抗辐射、硬度高、形稳性好等特性。

耐热复合材料应用综述

耐热复合材料应用综述



非连续纤维:

       非连续纤维可以由多种材料制得,如Al2O3、AlN、α/β-SiC、Si3N4、MgO等。表六为非连续纤维的特性。

耐热复合材料应用综述

耐热复合材料应用综述


晶须纤维

       最常用的晶须纤维为SiC纤维,有α/β两种晶体变量,如表七所示。SiC的立方晶体结构也即β型SiC;六边形和菱面形结构即α型SiC。由于两者结构不同,β-SiC的机械性能要比α-SiC稍有优越。制备方法不同会导致纤维直径、长度和晶体结构也不同,从而使其物理特性也各不相同。晶须表面发生的化学反应也会影响其性能。

耐热复合材料应用综述

耐热复合材料应用综述



颗粒

       SiC、石墨、Al2O3、云母、SiO2、氧化锆、氮化硼、玻璃、MgO、TiC、AlN、Si3N6、ZrO2, TiO2、Pb和Zn都可以用来制造颗粒材料,尺寸有1微米到500微米不等。这些颗粒常用于轻量、耐磨强度高的材料制造,形稳性好、振动阻尼高,如表八所示。

耐热复合材料应用综述

耐热复合材料应用综述



3. 耐热复合材料性能

机械性能:

       SiC纤维增强型SiC基复合材料的抗拉强度为30-50 N/mm2,剪切力为10-20 N/mm2,弹性模量为240 N/mm2,弹性较好。该材料在1200 ℃、1.0 Hz、疲劳应力在80-200 N/mm2的条件下进行实验研究。

       Al2O3纤维增强型Al2O3基复合材料抗拉强度为55-153 N/mm2,这是由于材料中45°纤维方位的缘故;弹性模量为46-74.5。

       TiB2纤维增强型B4C基复合材料的抗拉强度和挠曲强度有所改善,材料的硬度和韧性也有所改善。

       ZrSiO4颗粒/膨润土粘结剂增强型Li2O-ZrO2-SiO2-Al2O3基复合材料的挠曲强度为190-220 N/mm2,耐磨强度为51 mm3。

       SiC纤维增强型硅氧烷基复合材料的弹性模量比氧化铝纤维增强型硅氧烷基复合材料的弹性模量要低。

热性能:

       SiC基复合材料在25 ℃下的热导系数为25-30 W/m•K。

       ZrSiO4颗粒/膨润土粘结剂增强型Li2O-ZrO2-SiO2-Al2O3基复合材料出现了14%的直线式热收缩。

化学性能:

       SiC纤维增强型SiC基复合材料在1500 ℃下由于材料表面形成了一层SiO2而表现出抗氧化性。

来源:中国超硬材料网
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

2016-2018 版权所有:河南省机械工程学会(豫ICP备13020619号)

豫公网安备 41010302002451号

社会团体登记证书

快速回复 返回顶部 返回列表